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Abstract. As processes grow in size and complexity, the monitoring
of them becomes more important, to avoid production losses and even
accidents involving damage to personnel health and equipments. Pro-
cess monitoring is particularly challenging due to the presence of both
continuous and discrete variables, noisy information and lack or excess
of data. There are two important tasks involved in the process moni-
toring: fault detection and fault diagnosis. This paper proposes a fault
detection framework combining Principal Components Analysis (PCA),
Control Charts and a comparison with Statistic Limits obtained from
historical data process and inductive learning. PCA and control charts
have been used in the past to detect suspicious observations. Once the
suspicious observations are detected, a contribution chart and a compar-
ison with the statistic limits are performed for fault detection. We show

preliminary results from an electric circuit simulation composed by five
subsystems.

Keywords: Fault Detection, Principal Component Analysis, Inductive
Learning, Control Charts, Statistic Limits.

1 Introduction

As processes become more complex, the monitoring of them is very important in
order to improve process performance, efficiency and product quality. Monitoring
of industrial processes plays a substantial role in system safety, availability and
production quality. Early detection of faults can help to avoid major breakdown-
s and incidents. In order to tackle those problems, fault detection and system
diagnosis has been an active research domain since a few years ago.

There exist many research works related with fault detection. Most of the meth-
ods used are analytic, based on artificial intelligence (AI) or statistical methods.
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[1] classifies fault detection and isolation methods in three groups. 1) Quantita-
tive Model Based, 2) Qualitative Model Based and 3) Process History Based.

Quantitative Model Based fault detection methods are based on a mathemati-
cal model of the system. The occurrence of a fault is capture by discrepancies
between the observed behavior and the prediction made by the model. These
approaches use state estimation, parameter identification techniques, and parity
relations to generate residuals. Fault localization then, rests on interlining the
groups of components that are involved in each of the detected discrepancies.
However, it is often difficult and a time-consuming task to develop accurate
mathematical models that characterize all the physical phenomena occurring in

industrial processes.
Qualitative Model based fault detection methods use symbolic reasoning which

generally combines different sources of knowledge with graph theory to analyze
the relationships between variables of a system. An advantage of these methods is
that an explicit model of the system to be diagnosed is not necessary. Knowledge-
based approaches such as expert systems, may be considered as alternative or
complementary approaches where analytical models are not available.

Process History Based fault detection methods only require a big quantity of
historical process data. There are several ways in which these data can be trans-
formed and presented as prior knowledge of a system. These transformations are
known as feature extraction and could be qualitative, as those used by expert
systems, and qualitative trend analysis methods or quantitative, as those used
in neural networks, PCA, PLS or statistical pattern recognition.

There are many papers related to fault detection and diagnosis in different pro-
cesses. They use either an individual technique or make a combination of differ-
ent techniques, taking advantage of the best characteristics of each method, to
perform a better general behavior of the fault detection process. [2] presents a
comparative study in the monitoring of hybrid systems, where the continuous
part is modeled by Bond Graph and the discrete part is modeled by Petri Net-
s. [3] proposes a structure of a hybrid fault diagnosis system which integrates
Signed Directed Graph, Artificial Neural Networks and dynamic simulation. [4]
introduces a method based on hybrid system theory, which combines knowledge
base methods and model base methods. [5] proposes a process monitoring which
is composed of three parts: preanalysis, visualization and diagnosis, where the
proposed method integrates PCA, FDA and clustering analysis taking advantage
of each technique for a complete solution. [6] describes plant devices, sensors,
actuators and diagnostic tests as stochastic finite state machines, by assigning
transition probabilities and marginal probabilities to safe and fault events. By
using simple composition rules, it is possible to determine the feasible configu-
ration of alarms and their conditional probability given any event. [7] combines
the use of signed directed graph to make a classification model, PCA and fuzzy
knowledge to form a qualitative and quantitative model and compares the grade
of the patterns needed to be diagnosed to the given fault patterns. [8] proposses
a method based on the interaction between AI and control techniques. It uses
a causal graph representation of the process, enabling decomposition into sub-
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systems and reducing the diagnostic computational complexity. After that, at
local level, FDI techniques based on numerical residual generation and analysis
are carried out. [9] proposes a useful method when measures on the input sig-
nals can not be done due a nonexistent sensor or because it is impossible to do
measurements due to the nature of the system itself. Thus it takes plant out-
put signals, combines its variances, and uses a discriminant analysis upon the
resultant features to carry out the diagnosis. In [10] PCA and statistical control
charts are used to detect process operating faults on an industrial rolling mill
reheating furnace. The Q statistic and Hotelling T2 statistic are used to calculate
the control limits of the statistical control chart. [1 1] proposes a fault diagnosis
model based on machine learning which extracts multi-dimension features from
the detected signal to supervise the different features of it simultaneously.

In this paper we propose a fault detection framework combining Principal Com-
ponents Analysis (PCA), Control Charts and a comparison with Statistic Limits
obtained from historical data process and inductive learning. We show prelimi-
nary results from an electric circuit simulation composed with five subsystems.
The organization of the paper is as follows: section 2 gives preliminaries which
explaines how the statistical limits are obtained as well as background knowledge
on PCA and control charts. Section 3 gives the framework general description.
Section 4 shows how the framework works in a simulation example with single
and multiple faults and the performance of it in presence of white noise on mea~
surements, as well as a comparison of the general performance of it against two
similar frameworks. Section 5 gives conclusions to the paper.

2 Preliminary

2.1 Automatic Statistical Limits Obtention

[11] gives an algorithm to extract the statistical boundary vectors of a multi-
dimensional feature extraction. In this paper a modification of that algorithm
is done. Instead of doing multi-dimension feature extraction, here we work just
with the statistical mean of the system variable being measured. Thus, the algo-
rithm of inductive learning is used to obtain the statistical boundary vectors of
Wmaz (t1,2n,1) and Wmin(t1,n, 1) from a matrix which m; rows are the different
subsystems forming an entire process and the n columns present the changes of
the statistical mean of the subsystem variable being measured as time changes
from time ¢, to time ¢,. The algorithm is shown below.

1. Initialize the statistical boundary vectors Wmaz(t1,tn,3) = [w(ty,t2,1) -+
w(t1, ta, m;)]T, Wi (t1, tny i) = [w(t1,t2,1) - - - w(ty, t2,m;)]T and the counter
j=0.

2. Calculate Wmaz (7') = [max(wmaz (t1,tn; 1): Wmaz(tny tnt1, 1) *r-max
(Wmaz (t1, ta, M), Wmaz (tns tnt1,m;)))]T and calculate wmin(i) = [min
(wﬂ'liﬂ (tlt tn, 1): wmin(tm tnt1, 1) $is ‘min(wmin (tla tmmi)g Wmin (tm
tn+1vmi)))]T- If wmaa:(i) = 'wmax(ti:tmi) and Wmin() = wmin(ti:tmi)a
then j = j +1, else j = 0.
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3. If 5 = Vi, go to step(4), else 'wmaz(tl:tn’i) _— wmax(i)a tn = tn41, BO
to step (2)
4. OUtPUt wmaz(tlv tn:i): wmt'n(tls trni)s tn, exit.

Where Wmaz (t1,tn, %) and Wmin(t1,%n, 1) in the present paper are used as the
desired statistical limits for the statistical mean of the system variable being

measured.

2.2 Principal Components Analysis (PCA)

rned with explaining the variance and
through a few linear combinations of
basically: data reduction and inter-

The principal component analysis is conce
covariance structure of a set of variables,
these variables. The general objectives are

pretation.
PCA decomposes the X original data matrix with dimension m x n (m

number of samples and n number of variables) as:

X =tp7 +topf + - +tapt + E=ToP, + E (1)

vectors are called the scores of the principal components and have informa-
tion on how the samples are related to each other. p; vectors are the eigenvectors
of the covariance matrix of X, and are known as the loads of the principal com-
ponents. They have information on how the variables are related to each other.
In fact principal components analysis splits X matix in two parts, one that de-
scribes the system variation and other one that captures noise or information
not modeled. The X matrix could often be aproximated using only A (< n)

principal components instead of n variables as

A
X=> tpl +e (2)

i=1

ti

Where e is the residual. PCA is scale dependent, thus when variables are
measured in different scales or on a common scale with widely differing ranges,
they are often standardized. Another important issue is the minimum quantity of
components needed to explain the data. The number of PC to retain in order to
represent the maximum variance depends on the data and the existing correlation
between the variables such that there are several decision criteria. [12] proposes
to consider the amount of total sample variance explained, the relative sizes of
eigenvalues or the use of scree plots. Thus the number of principal components
should be equal or less than the variables of X. When the maximum variance of
data is explained with the first two principal components, samples lie on a plane
and a constant density ellipse could be formed by them.

Figure 1shows the plane and constant density ellipse formed by two principal
components, where the first principal component is the one that has the major
data variation, while the second one is the next with the major data variation of
the rest and is orthogonal to the first one. Thus, PCA model is able to describe
significant variations in a fewer dimension than the original n variables does.



Fault Detection Combining PCA, Control Charts... 271

a-Smpl
Unusual variation outside the modal!

=l

. T2

Variable 3

Fig. 1. Plane and constant density ellipse formed by two principal components.

2.3 Control and Contribution Charts in Statistical Process Control

Generally, there are two statistics to define the action and warnings limits used
in multivariate control charts. The first statistic is Hotelling’s 72 as follows:

-1
T? = X;PAPTXT ~ %T%A—)FA,!-;—A 3)

Where X; is the vector containing the data matrix X at sample time i, and A
is a diagonal matrix containing the inverse of the eigenvalues of the PC scores.
T? is a statistical measure of the multivariate distance of each observation from
the center of the data set. This is an analytical way to find the most extreme
points in the data. Thus, an out of control signal is identified if

Tiz > %‘;‘(L'TLT_J%!FA,n—A.a (4)

confidence limit « typically takes the value of 0.05 or 0.01 for the limits. The
second metric used in process monitoring to identify non-conforming operation is
the @ statistic (also referred as Squared Prediction Error, SPE). The Q statistic
is defined to be the quadratic form of the residuals, that is the squared difference

between the observed values and predicted values from the nominal or reference
models:

k
Qi =eief = Z(z‘ij - &;)? (5)
j=1
And its upper limit (UL) is given by a chi-square distribution with p— A degrees

of freedom
UL=x2_4(c) (6)

Q is the statistic that measures lack of fit of a model to data. Under the
assumption that the linear PCA is valid, the Q statistic defines the Euclidean
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distance of the position of an observation from the hyperplane formed by the
PCA model. See figure 1. In addition we could determine which variable of
the process being analyzed is responsible for the unusual @ behavior, looking
at a chart showing the contribution of each input to the Q statistic. This chart
is known as the contribution chart and includes all process variables and their

corresponding PCA scores in its axis.

3 Framework Description

The proposed detection framework is shown in figure 2. As the framework is a
Process History Based fault detection method, this only requires a big quantity of
historical data process. This data set takes into account only the normal system
data operation. They will be transformed by both, PCA model and the normal
operation data limits, and used as prior knowledge of the system to perform the

detection process.

Nomal Extraction
[ P
Operation P of
Dalo => | ¢ C — Process = ﬂ
A A Data
Set = ﬂ
Set
Norm. Op.
Data Limits —> c» —= —> c—p

e Suspiecious P —
@ Observation ﬂ
Contribution

Chart

Fig. 2. General fault detection framework

The first step is to obtain a normal operation data set from system or pro-
cess and a standardization procedure is carried out. From this data set a PCA
model is obtained to see the relationships and to find out the correlations be-
tween variables, that at a first sight would be very difficult to notice. Then, a
decrement in original data matrix dimension is achieved, allowing to work with
less but enough data to describe the maximum variability of original system.
The PCA model gives the loads and scores of the principal components corre-
sponding to normal operation. With this loads and scores of normal operation,
the value of the explained variance for each component as well as the boundaries
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for Hotelling’s 72 and Q statistics are obtained (equations 4 and 6 respective-
ly). They are the corresponding limits in control charts. In addition, the normal
operation data limits are obtained following the steps mentioned in section 2.1.
An adequation to the method described in [11] is being done. Instead of taking
several signal transformation functions (STF) and so many single output func-
tions (SOF), here it is taken just one STF and one SOF. Raw data is taken as the
STF and the mean as the SOF, making it possible to obtain the minimum and
maximum statistic limits that variables being monitored should have in normal
operation.

For detection process, a process data set is extracted and analized as follows.
A PCA model is built from the extracted process data set, and the scores of the
principal components given by this model are plotted in control charts comparing
them with the 72 and Q statistics corresponding to normal operation model. If
the chart does not exhibits a trend, another process data set is extracted to
be analized. But if a normal operation T2 or Q limit is violated or a trend
is present, two actions are taken. 1)A contribution chart is done to find out
which variable or variables has the major contribution to system'’s variability,
and 2)the suspiscious observation is compared to the normal operation data
limits previously obtained to verify if it is out of bounds.

4 Case Study

This section shows the performance of our framework in a simulation example.
The simulation consists in the operation of an electric system formed by five
subsystems. Each subsystem is simulated with different RL series circuits (see
figure 3). A change within +10% of the original values in each subsystem’s
components is considered as normal operation. An electrical current sensor is
available such that each subsystem’s current could be measured. After PCA a
reduction to 2 variables was obtained.

The methodology proposed is applied as follows:

1. From normal operation history process data (electrical current in each sub-
system), build PCA model and obtain T2 and Q statistics as well as the
minimum and maximum limits for each subsystem’s current.

2. Take a test data set.

3. Build a PCA to the test data set and obtain a reduction on original dimen-
sions.

4. Build and observe control charts for 7% and Q statistics. If control chart
detects a trend in a specific time instant go to 5), else go back to 2).

5. Build contribution chart and obtain the electrical current value for suspis-
cious time instant (sample).

6. Compare the suspiscious electrical current value with its normal operation
limits obtained in 1) and detect which subsystem is in faulty mode.
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Fig. 3. Simulation of a system formed by five subsystems.

4.1 Single Fault
done to detect simple faults and obtain the effectiveness

Several runs have been
put and a combination of both

percentage in this task. A ramp input, a step in
were simulated in different subsystems to see the performance of the methodology

proposed. For instance, a simulation of a single fault present in subsystem 2 in
which current decrements in steps of 0.9% is included in sample 80. Figure 4

shows how control charts depict a trend to pass its control limits.
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Fig. 4. Control charts for a decrement of 0.9% in subsystem’s 2 current.

Figure 5 shows that variable 2 (subsystem 2) is the one that has the major
variability of the system, indicating thus that subsystem 2 is probably in faulty
mode. Then, when checking this suspicious observation against its corresponding
normal operation limits, it is found that subsystem’s 2 electrical current value
has decreased under the lower current normal operation limit, having in this way

detected the fault.
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Fig. 5. Contribution charts for samples 81 and 86, indicating a probably problem in
subsystem 2.

4.2 Multiple Fault

In the case of multiple fault, several runs have been carried out simulating a fault
in two subsystems simultaneously. A ramp input in both subsystems, a ramp in
one and a step in the other, a step in both, and a combination of a negative
and positive ramp and step in one, the other or both. In this case contribution
chart not always shows the real variables that possibly have problems. That is
the reason explaining why the use of minimum and maximum limits for normal
operation data plays an important role. As an example, a multiple fault is in-
cluded in sample 80. Subsystem 3 having increments of 10% and subsystem 5
decrements of 0.9% in theirs corresponding electrical current normal operation
value. Note that figure 6 depicts how the contribution chart does not show the
real variables in multiple faulty mode, but it shows too how the implementa-

tion of statistic limits really does. Adittionally, the general performance of the
proposal is shown in table 1.

Scores Plot Sample No. 81

Fle ER Vew Web Wirdow Hep

7 1 D@ 2B 7 CnetDcey CHATLABSWo v|||{
. T
¢ Sample No.81  Lower Upper Actual —

el

Limit Limit Value

08706 08948 0.8727
1.2161  1.2201  1.2163
Subsystem3  [1.2392  1.2843 2.6080| Out of limits
0.9613  0.9650 0.9616
Subsystem5 [1.0233  1.0377 1.0155] Out of limits -
t : 3.

‘smlmuu B e |

™

Contribution to variabllity

&

A A A A
1 2 3 4

Variables (subsystems)

j
1
:

Fig. 6. Contribution charts for sample 81 (left) and the detection using the statiscal
limits for the same sample (right).
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Table 1. General performance of the proposal.

Fault Number of Simulations  Percentage Detected
Single 50 98%
Multiple 50 96%

4.3 Measurement Noise

ations taking into account different mea-~
ne, two or three subsystems. Figure 7
hen it exists measurement noise of 0.1

Table 2 shows the results for simul
surement noise magnitudes present in o
depicts the behaviour of control charts w
magnitude present in subsystem 1.

Table 2. Performance of detection when measurement noise is present in one, two and

three subsystems.
Noise Magnitude One Subs. Two Subs. Three Subs.
0.0001 100% 100% 100%
0.001 100% 100% 85%
0.01 95% 85% 80%
0.1 90% 85% 75%
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Fig. 7. Presence of measurement noise of 0.1 magnitude in subsystem 1.
It is important to note that none of the control charts shown in figure 7 has

a specific trend. Samples above T2 control chart limit are outliers. Note that
all samples in Q control chart are below its limit, which has sense because in
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this case noise does not brake the original correlation between variables. As T2
is a measure of the multivariate distance between samples with respect to the
center of data, it could detect a fault that keeps the correlation structure which
could not be detected by Q. Q detects faults that violate mass or energy balance
pointing out a correlation breakdown.

4.4 Comparison against two similar frameworks

To observe the general performance of our proposal, a comparison against two
similar Process History Based fault detection methods has been carried out.
We have chossen [10] and [11] as the comparison frameworks because of their
use of PCA and Multi-dimension features extraction of signal based on machine
learning respectively. Table 3 shows this general performance comparison.

Table 3. Comparison of the general performance of our proposal against two similar
frameworks.

Detection of PCA method Machine Learning  Qur Framework
Single Fault Vv Vv Vv
Multiple Fault NO v 4
Measurement Noise NO NO Vv
Process Noise NO NO NO
Lack of Information NO NO NO

From table 3 it could be observed that PCA used as itself offers a poor data
analysis. It is observed that machine learning based method (ML) as well as ours
framework offer multiple fault detection. Nevertheless the use of ML needs to
be implemented for each measured signal which generates a big quantity of data
to be analysed. Meanwhile our framework avoids this data explosion by mean of
the use of PCA, control charts and the obtention of the normal limits operation
Just for the statistical mean of variable been measured. An additional advantage
over the other two frameworks is that ours detect measurement noise.

5 Conclusions

This paper has presented a fault detection framework based on history process
data. An advantage over model based methods is that this framework only needs
a good historical data set of normal system operation, which in practice it is rela-
tivelly easy to obtain for computer controlled industrial processes. This proposal
is easy to implement and to adapt because when original process changes, it is
only required to modify the original data base instead of develop a new mathe-
matical model from it. Another advantage is that the use of PCA model allows
to work with less quantity of data, but keeping the original correlation between
variables. It is important to note that the use of 72 and @ control charts allows
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to distinguish between the presence of a fault and the presence of measurement
noise. Also this framework could be used as an early way for fault detection as
shown in subsection 4.1 when a deviation of 0.9% on variable been measured
was detected. Finally the use of minimum and maximum limits for comparisons
between a suspicious sample and its normal values gives the detection of a single

or multiple faults existing in the system.
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